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Abstract

Taxonomies and knowledge graphs (KGs), which represent real-world entities’ abstract
concepts and properties/behaviors/facts, constitute the essential information in knowledge
bases (KBs). However, most existing KBs are constructed under the closed-world assump-
tion, which often corresponds to a fixed schema and requires ad-hoc canonicalization to
integrate new knowledge. To empower KBs towards easy accommodation of emerging
entities and relations, we propose to create open-world TaxoKGs based on existing au-
tomatically constructed taxonomies and open KGs, where taxonomies serve to provide a
loosely-defined schema and mitigate the reliance on ad-hoc canonicalization. To further
improve the completeness of TaxoKG, we collect several new benchmark datasets towards
the development of HakeGCN, an innovative hierarchy-aware graph-friendly model for
TaxoKG completion. Through extensive experiments, we demonstrate HakeGCN to
outperform various state-of-the-art KB completion methods on both taxonomy concept
prediction and KG relation prediction tasks based on both standard metrics and human
evaluations. The benchmark datasets and the implementation of HakeGCN are available
at https://github.com/lujiaying/Open-World-TaxoKG-CoLearning.

1. Introduction

Knowledge bases (KBs) have incorporated large-scale multi-relational data and motivated
many knowledge-driven applications such as online encyclopedia [Vrandečić and Krötzsch,
2014] and e-commerce product catalog [Dong et al., 2020]. The knowledge stored in KBs
can be categorized into two types:

1. The taxonomic knowledge that contains hierarchical IsA relations between entities and
abstract concepts, which are stored in taxonomies (e.g., “(Cat, IsA, Mammal)” in Fig. 1a);

2. The non-taxonomic knowledge that contains graph-structured interactions between en-
tities and attributes of entities, which are stored in knowledge graphs (KGs) (e.g., “(Cat,
HasProperty, Fluffy)” in Fig. 1a).

Taxonomies are useful tools to organize and index concepts of entities so that users can
efficiently find the information of interest [Shen et al., 2021, Mao et al., 2020]. On the
other hand, KGs store human understanding of entities’ properties, facts, or behaviors in a
structured way, which are essential for knowledge representation and reasoning [Ding et al.,
2019]. Extensive efforts have been made to construct KBs [Bollacker et al., 2008, Suchanek
et al., 2007] that include both taxonomies and KGs. However, most existing KBs are in
closed domains, and the creation process highly relies on pre-defined schema [Riedel et al.,
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Figure 1: Toy examples of existing KBs and TaxoKG.

2013] and exhaustive entity/relation canonicalization [Wu et al., 2018]. Although with
guaranteed precision, closed-world KBs are limited in coverage and freshness. For example,
if a KB is defined with a curated evolutionary biology schema that focuses on taxon and
related characteristics of organisms, it is hard to incorporate knowledge triplets such as
“(Cat, KeptAs, Pet) and (German Shepherd, TrainedAs, Detection Dog)”. On the other
hand, when a new triplet “(Kitty, KeptAs, Pet)” is introduced, although as humans we know
kitty is a synonym of cat, the closed-world KB cannot easily incorporate the new knowledge
unless the canonicalization tool can identify Kitty as Cat. Therefore, closed-world KB is
most suitable for fixed or slowly evolving knowledge-enhanced applications.

Real-life applications often need to evolve with the fast-expanding entities and relations.
To accommodate new emerging data, we propose to build open-world KBs with both tax-
onomic and non-taxonomic relations, namely Taxonomic Knowledge Graph (TaxoKG),
by integrating automatically constructed taxonomies (AutoTAXOs) and open knowledge
graphs (OpenKGs). An AutoTAXO is a collection of entity-concept pairs mined from web
pages and search logs [Speer et al., 2017, Wu et al., 2012], and an OpenKG stores numer-
ous factual triplets collected by open information extraction techniques from unstructured
texts [Fader et al., 2011, Gashteovski et al., 2018]. Fig. 1b shows a toy example of Tax-
oKG. TaxoKG does not require curated schema or ad-hoc canonicalization. Instead, the
adopted open-world setting empowers it to expand with new knowledge, and the integrated
taxonomy serves as a soft schema for KG to mitigate the reliance on canonicalization (e.g.,
Kitten, Kitty are children of Cat).

To understand the utility of TaxoKG, we create TaxoKG-Bench, a new benchmark
with six datasets covering knowledge in general, medical, and music domains. To the best of
our knowledge, this is the first effort on the integration of open-world taxonomies and KGs.
Although covering an unprecedentedly large amount of entities, concepts and relations,
the knowledge in TaxoKG-Bench is not yet fully exploited due to the incompleteness of
AutoTAXOs and OpenKGs themselves (e.g., missing edges like “(Siamese Cat, is, Cat)”
can be added to AutoTAXO, while “(Cat, be covered in, Fur)” can be added to OpenKG
in Figure 1b). Therefore, it is urgent to develop effective TaxoKG completion methods.

One significant challenge for open-world TaxoKG completion is to handle unseen en-
tities, concepts and relations. Previous KB completion methods often rely on KB embed-
dings to predict the validity score of missing links [Bordes et al., 2013, Vashishth et al.,
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2020, Zhang et al., 2020]. However, these methods need to re-generate extra embeddings
when presented with new data. Another key insight to complete TaxoKG is to leverage
the mutual enhancement between taxonomies and KGs. Taxonomies convey rich context on
inferring entities’ properties and behaviors (i.e., non-taxonomic relations). For example, hu-
mans have the common sense of “mammal can produce milk”. Hence, if we encounter a rare
mammal “pangolin”, we can infer that “pangolin can produce milk”. This reasoning ability
is called “generalization” in cognition science [Hayes et al., 2010, Stenning and Van Lam-
balgen, 2012]. Furthermore, KGs are helpful for deducing entities’ abstract concepts (i.e.,
taxonomic relations). If we know “mammal can eat and produce milk”, and “pangolin can
eat and produce milk”, it is highly possible that “pangolin is a mammal”. This conceptualize
ability is heavily used in information compression and human communication [Nuyts and
Pederson, 1999, Davis and Marcus, 2015]. Existing KB completion methods, unfortunately,
are not designed to leverage such mutual enhancement between taxonomies and KGs, thus
leaving the jointly learning on TaxoKG an open research problem.

In this work, we propose HakeGCN, a novel hierarchy-aware graph-friendly model
which leverages the mutual enhancement between taxonomies and KGs. HakeGCN em-
ploys the polar coordinate embedding space to model the semantic hierarchy, and GCNs-
based KB embeddings, to capture the higher-order organization. Moreover, HakeGCN
creates entity, concept, and relation representations from their surface mentions, thus han-
dling open-world challenges We examine HakeGCN and existing models on the TaxoKG
completion task using the classical metrics and human evaluations. Then we conduct exten-
sive ablation studies to evaluate (1) the utility of our technical designs; (2) the benefits of
jointly modeling existing AutoTAXOs and KGs; (3) the impact of information propagation
from taxonomic and non-taxonomic neighbors. We further present case studies for inferred
knowledge and analyze the efficiency and scalability of HakeGCN in the Appendix.

2. Related Work

Knowledge Base Completion. Real-life KBs are usually incomplete [Dong et al., 2014].
KB completion aims at inferring missing facts based on the known facts. One popular
approach is to embed entities and relations into vector spaces, and define a score function
such that valid triples are assigned higher scores than the invalid ones. These KB embedding
methods can be categorized into translation-based [Bordes et al., 2013, Sun et al., 2018,
Zhang et al., 2020], semantic matching-based [Yang et al., 2015, Nickel et al., 2016], and
neural network-based [Dettmers et al., 2018, Schlichtkrull et al., 2018, Vashishth et al., 2020].
More recently, HAKE [Zhang et al., 2020], inspired by RotatE [Sun et al., 2018], utilizes
the modulus and phase information to model hierarchical relations. On the other hand,
RGCN [Schlichtkrull et al., 2018] and CompGCN [Vashishth et al., 2020] incorporate graph
neural network (GNN) as encoder to propagate the relation-specific information among
entities and utilize translational scoring function as decoder to infer the validity of edges.

Open-World Knowledge Bases. Existing KB completion models implicitly follow the
closed-world assumption [Reiter, 1981] in which all entities and relations have been observed
and only missing links of known relations between existing entities can be discovered. Un-
fortunately, closed-world KB completion models fail to adapt to new emerging entities and
relations in many real-life applications [Shi and Weninger, 2018]. It is essential to infer
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knowledge about entities and relations not present in the existing KB, which is known as
open-world KB completion [Gupta et al., 2019, Shah et al., 2019, Broscheit et al., 2020].
CaRe [Gupta et al., 2019] proposes a canonicalization-infused representation model to en-
rich OpenKB embeddings with the output of a canonicalization model, whereas OWE [Shah
et al., 2019] predicts facts for unseen entities based on their textual descriptions.

Co-Learning of Taxonomy and Knowledge Graph. Previous works on taxonomies
mainly focus on their automatic construction [Shen et al., 2020, Mao et al., 2020] and
downstream tasks [Xiang et al., 2021, Shen et al., 2021]. On the other hand, extensive
efforts have been put on KG construction [Suchanek et al., 2007, Bollacker et al., 2008],
and KG-enhanced applications [Ding et al., 2019, He et al., 2020]. Although there exist
attempts to collect closed-world KBs that contain both taxonomies and KGs [Miller, 1995,
Bollacker et al., 2008, Suchanek et al., 2007, Speer et al., 2017], the two in the open-world
setting (AutoTAXO and OpenKG) have rarely been studied together. JOIE [Hao et al.,
2019] proposes a universal representation of entities and concepts for a two-view KB, which
contains the ontology-view and the instance-view. GeoAlign [Xiao and Song, 2021] utilizes
the manifold-aligned hyperbolic embedding for taxonomy and Euclidean embedding for KG
to tackle the representation learning problem. Both JOIE and GeoAlign are designed for
closed-world setting, thus not directly applicable to the open-world problems.

3. Problem Definition

The TaxoKG completion task is a variant of the general open-world KB completion:

Definition 3.1 (Open-world KB Completion). Given the incomplete KB B = (V,R, E)
where V, R and E are entity set, relation set and triplet set, open-world KB completion
aims at inferring the missing triplets {(s, r, o)|(s, r, o) /∈ E , s ∈ Vs, r ∈ Rs, o ∈ Vs}, where
Vs and Rs are entity superset and relation superset, respectively.

More specifically, TaxoKG B contains the taxonomy T and the knowledge graph G. An
AutoTAXO T = (Ve,Vc, ET ) is a collection of entity-concept pairs, where Ve and Vc are
entity and concept sets, and ET = {(e, c)} ⊆ Ve×Vc is the set of taxonomic edges, all of which
carry the uniform IsA relation. An OpenKG G = (Ve,RG , EG) is a collection of subject-
relation-object triplets, where Ve is the entity set shared with T , RG is the relation set that
contains all other relations except for the taxonomic ones, and EG = {(s, r, o)} ⊆ Ve×RG×Ve

is the edge set connecting entities with associated relations. Hence, there exist two sub-tasks
for TaxoKG completion: (1) the AutoTAXO concept prediction task and (2) the OpenKG
relation prediction task. The former is to assign a set of concepts Ce = {c1, c2, . . . , cm}
for each entity e ∈ Ve, whereas the latter aims to predict missing facts in the form of
qs = (?, rk, oj) or qo = (si, rk, ?). It is worth noting that e, s, o ∈ Vs

e , c ∈ Vs
c , and r ∈ RG

s,
which means we need to handle unseen entities, concepts, and relations.

4. TaxoKG-Bench: A New Benchmark with Six Datasets for TaxoKG

To the best of our knowledge, our work is the first to study the open-world taxonomy and
knowledge graph co-learning problem. Hence, we create and release TaxoKG-Bench with
six datasets of large-scale TaxoKG to the community for future studies1.

1. TaxoKG-Bench: https://figshare.com/articles/dataset/Taxo-KG-Bench/16415727
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4.1 Creation Process

The goal of building TaxoKG-Bench is to provide a benchmark to evaluate models on
TaxoKG-based tasks such as its completion and applications. TaxoKG completion in-
volves the ability to predict new-emerging concepts and novel facts for unseen entities.
TaxoKG-Bench integrates the following data sources (details of them and the reason why
we choose them are in Appx. A.1):

• Three AutoTAXOs: MS Concept Graph (MSCG) [Wu et al., 2012], SemEval-2018
Task 9 2A:Medical (SEMedical) and 2B:Music (SEMusic) [Camacho-Collados et al.,
2018];

• Two OpenKGs: ReVerb [Fader et al., 2011] and OPIEC [Gashteovski et al., 2018].
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Figure 2: Concept, entity and relation histograms on six aligned TaxoKGs.

To create TaxoKG-Bench, we first align AutoTAXOs and OpenKGs by matching enti-
ties in entity-concept pairs with subjects or objects in subject-relation-object triplets. It is
possible to use off-the-shelf entity canonicalization tools to match entities. However, their
reliabilities are far away from satisfactory. Alternatively, we use straight-forward string
matching for the alignments. As can be seen from Fig. 2, there exist many long-tailed enti-
ties, concepts and relations, which makes the TaxoKG completion task more challenging.
To make our benchmark efficient and easy to access for researchers, we conduct further
post-processing (Appx. A.2) on the aligned six datasets to obtain the final released version.

4.2 Benchmark Overview

After the creation process mentioned above, we obtain the final version of six TaxoKGs,
as can be seen in Table 4 (Appx. A.2). We aim to construct TaxoKG-Bench as a large-

5



Lu & Yang

scale, diverse, challenging benchmark for TaxoKG completion. The coverage of TaxoKG-
Bench is broad since the data sources come from general, medical, and music domains. The
sizes range from thousands to hundred-thousands knowledge triplets. Moreover, the scale of
relations is much larger than previous closed-world KBs. As an illustration, the widely-used
closed-world KBs WN188RR [Miller, 1995] and FB15k-237 contains 11 and 237 relations
separately, while our TaxoKG typically contains thousands of relations. Consequently,
such large relation spaces requires stronger KB completion models. The proportions of tax-
onomic knowledge in TaxoKG-Bench vary from 1.4% to 13.5%, ensuring the benchmark’s
diversity. Among the great magnitude of entities, concepts, and relations, significant por-
tions in the test set are never observed during training, as opposed to the assumption of
closed-world KB. Table 5 (Appx. A.3) shows the percentages of unseen entities, concepts
and relation in the six TaxoKGs. In the most challenging one MSCG × OPIEC, nearly
half of the entities, relations, and one-third of concepts are unseen, which poses a serious
challenge for the novel TaxoKG completion task.

5. HakeGCN: A Novel Method for Effective TaxoKG Completion

To tackle the TaxoKG completion task, our key insight is to leverage the mutual en-
hancement between taxonomy and KG. Hence, we propose a novel model with the learn-to-
conceptualize and learn-to-generalize abilities via combining Hierarchy-Aware Knowledge
base Embedding and Graph Convolutional neural Networks, namely HakeGCN. As Fig. 5
(Appx. B.1) shows, it can be regarded as an encoder-decoder model. HakeGCN includes
a series of essential technical designs for TaxoKG completion: (1) The polar coordinates-
based GCN encoder (§ 5.2) which joins the power of GCNs in modeling multi-relations
in KGs and polar coordinates in modeling hierarchical relations. (2) The taxonomy-based
sampling strategy (§ 5.2) to improve the GCN encoder in learning from less-noisy neighbors.
(3) The GCN-oriented phased bounded decoder (§ 5.3) that modify the value boundary of
the original phase coordinate score function in HAKE [Zhang et al., 2020], making it easier
for the decoder to differentiate entities at the same taxonomy level.

5.1 Handling Unseen Entities, Concepts and Relations

As §4.2 states, there are numerous unseen entities, concepts, and relations in the TaxoKG
completion task. Unfortunately, most existing KB completion models [Bordes et al., 2013,
Zhang et al., 2020, Schlichtkrull et al., 2018] are developed under the closed-world assump-
tion, therefore their solution to embed entities/concepts/relations is to treat them as phrases
and assign a look-up embedding table for phrases seen in the training set. Consequently,
these models cannot handle new emerging phrases in the open-world setting. InHakeGCN,
we opt to create entity, concept, and relation representations from the tokens of the surface
mentions [Broscheit et al., 2020]. The entity and concept representations are then fed into
the GCN encoder as initial embeddings of vertices h0

v, and relation representations as initial
embeddings of edges h0

r. For more details please refer to Appx. B.2.
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5.2 GCN Encoder with Polar Convolution and Taxo-based Neighbor Sampling

Updating Embeddings in Cartesian Coordinate. Since most existing KG embedding
methods consider the input features or initial embeddings of entities and relations in the
Cartesian coordinate system [Wang et al., 2017], we first adopt the widely-studied relational-
GCNs in the Cartesian coordinate system. The choice of the GCN encoder (Appx. B.3) is
flexible, as long as it takes both vertex and edge representations into account. We propose
our own GCN encoder, which is a generalized form of existing relation-GCNs:

mk+1
v =Agg({W k

dir(r) ϕ(hk
u,h

k
r),∀(u, r) ∈ N (v)}), (1)

hk+1
v =PReLU(W k

v [h
k
v ∥mk+1

v ] + bkv). (2)

The message mk+1
v on vertex v is collected from the neighbors N (v). The composition

function ϕ(hu,hr) can be either hu − hr, hu ∗ hr or hu ⋆ hr [Nickel et al., 2016]. The
aggregation operator Agg(·) can be chosen from average, sum, max or other functions. In
practice, we select ϕ(hu,hr) and Agg(·) through hyperparameter tuning. Moreover, the
relation-specific learnable parameter Wdir(r) [Vashishth et al., 2020] in Eq. (1) is

Wdir(r) =

{
Wo, (u, r, v) ∈ E ,
WI , (u, r, v) ∈ Einv,

(3)

where Einv denotes invert edges introduced to B for better vertex and edge representations.
In Eq. (2), [hk

v ∥mk+1
v ] denotes concatenation of the node and the message representations.

Moreover, the edge updating rule is:

hk+1
r =PReLU(W k

r h
k
r + bkr). (4)

Mapping from Cartesian to Polar Representations. The polar coordinate-based
embedding have shown promising results in closed-world KB completion [Sun et al., 2018,
Zhang et al., 2020], as it utilizes the modulus dimension information to reflect depth of the
taxonomy hierarchy and the phase dimension to represent the entities’ surrounding non-
taxonomic relations. To bridge the gap between the Cartesian coordinate embeddings from
HakeGCN encoder and the polar coordinate embeddings used by decoder, we conduct the
following representation mapping:

ρ =
√

x2 + y2 and θ = atan2(y, x), (5)

where x, y ∈ R, ρ ∈ R+, and θ ∈ [−π,+π]. The atan2 function is a variation of the
arctangent function (Appx. B.4). During the polar convolution process above, vertex and
edge embeddings in Cartesian coordinate can be denoted as h = [x ∥ y]. Assuming h’s
dimension is 2d, then h stores d pairs of Cartesian coordinates. Therefore, using Eq. (5), h
can be mapped into h = [ρ ∥ θ] containing d pairs of polar coordinates.
Taxonomy-based Neighborhood Sampling. We propose a taxonomy-based neighbor
sampling strategy that intentionally keeps useful neighbors and discards noisy ones, which
is an advancement of existing uniform neighbor sampling [Schlichtkrull et al., 2018]. The
intuition is to allow the GCN encoder to see more neighbors close on the taxonomy, which
contains less noise. The technical details are in Appx. B.5.
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5.3 GCN-Oriented Phase Bounded Decoder

After getting the representations from the GCN-based encoder, the decoder scores “(subject,
relation, object)” triplets through a function f(s, r, o) : Rd × Rd′ × Rd → R. We adopt the
polar coordinate score function [Zhang et al., 2020] with a GCN-oriented boundary:

f(s, r, o) = −d(s, r, o) = −λmdm(s, r, o)− λpdp(s, r, o), (6)

where (s, r, o) denotes both entity-concept pairs (with the associated relation of “IsA”)
and entity-relation-entity triplets in TaxoKG, and d(s, r, o) denotes the distance function.
In particular, λm, λp ∈ R are two learnable parameters to balance the modulus distance
dm(s, r, o) and the phase distance dp(s, r, o). We also propose a GCN-oriented boundary for
dp for effective optimization. The technical details are elaborated in Appx. B.6.

Loss Function. We adopt the widely used negative sampling loss with self-adversarial
strategy [Sun et al., 2018] for HakeGCN, of which the details are in Appx. B.7.

6. Experiments

In this section, we evaluate our proposed HakeGCN through performance comparisons, in-
depth analysis, and ablation studies. Due to space limit, we present case studies (Appx. C.5),
and efficiency evaluations (Appx. C.6) in the Appendix.

6.1 Experiment Settings

Evaluation Protocols. For the AutoTAXO concept prediction subtask of TaxoKG com-
pletion, we choose Mean Average Precision (MAP) and Precision at N (P@N) as evaluation
metrics [Camacho-Collados et al., 2018]. MAP is based on top-15 predicted concepts. For
the other OpenKG relation prediction subtask, we follow previous KB completion stud-
ies [Bordes et al., 2013] to rank candidate entities under the “filtered” protocol (Appx. C.1),
and we choose Mean Reciprocal Rank (MRR) and Hits at N (H@N) as metrics.

Compared Methods. We adopt the following representative methods as baselines (for
details please refer to Appx. C.2):

• Translation-based: TransE [Bordes et al., 2013], HAKE [Zhang et al., 2020];

• Semantic matching-based: DistMult [Yang et al., 2015], HolE [Nickel et al., 2016];

• GCN-based: R-GCN [Schlichtkrull et al., 2018], CompGCN [Vashishth et al., 2020];

• Mutual enhancement-based: LtCaG (Appx. C.2).

We integrate the same techniques introduced in §5.1 to mitigate unseen entities, concepts,
and relations for baselines. The choices of hyperparameters are described in Appx. C.3.

6.2 Performance Comparisons

Tables 1a, 1b and 1c show the performance of compared models on TaxoKG-Bench.
Our näıve LtCaG model, which requires no training, surprisingly achieves competitive
performance to all complicated models except for HAKE in AutoTAXO concept prediction
metrics (MAP, P@10,30,50) on all six datasets. Our HakeGCN consistently outperforms
SOTA models on all datasets on both tasks, which demonstrates the substantial advantages
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Table 1: TaxoKG completion results in different domains. For abbreviations, C-* indicates
metrics for concept prediction, while R-* indicates metrics for relation prediction. Under-
lined numbers denote the second runners, while bold numbers denote the winner.

(a) General domain.

MSCG × ReVerb MSCG × OPIEC
C-MAP C-P@1, 3, 10 R-MRR R-H@10, 30, 50 C-MAP C-P@1, 3, 10 R-MRR R-H@10, 30, 50

TransE .007 .001, .003, .002 7e-4 8e-4, .002, .004 .006 .004, .002, .001 .002 .001, .004, .008
HAKE .034 .013, .013, .010 .029 .065, .120, .153 .031 .014, .011, .010 .539 .787, .821, .837

DistMult .004 .004, .001, 5e-4 .001 3e-4, .004, .006 .001 9e-4, 3e-4, 3e-4 .080 .131, .159, .176
HolE .007 .003, .003, .002 7e-4 7e-4, .002, .004 .006 .004, .002, .001 .002 .001, .004, .008

R-GCN .003 5e-4, .001, 8e-4 .001 8e-4, .003, .007 .044 .044, .017, .006 .017 .031, .121, .179
CompGCN .014 .008, .005, .004 4e-4 2e-4, 6e-4, 8e-4 .004 .003, .002, .001 .011 .025, .051, .067

LtCaG .005 .003, .002, .002 .001 .002, .003, .004 .003 .002, .001, .001 .002 .002, .006, .009
HakeGCN .069 .033, .028, .017 .031 .058, .113, .150 .070 .052, .027, .014 .675 .756, .805, .832

(b) Medical domain.

SEMedical × ReVerb SEMedical × OPIEC
C-MAP C-P@1, 3, 10 R-MRR R-H@10, 30, 50 C-MAP C-P@1, 3, 10 O-MRR R-H@10, 30, 50

TransE .036 .104, .083, .050 .002 .002, .009, .012 .025 .045, .061, .030 .005 .007, .019, .030
HAKE .203 .307, .286, .216 .170 .343, .430, .459 .262 .371, .309, .256 .352 .450, .509, .544

DistMult .065 .188, .069, .033 .023 .070, .135, .187 .022 .159, .068, .032 .032 .061, .158, .218
HolE .029 .063, .063, .044 .002 .002, .005, .009 .024 .091, .030, .027 .006 .007, .018, .032

R-GCN .024 .018, .041, .052 .001 .001, .003, .004 .036 .159, .062, .037 .004 .003, .016, .026
CompGCN .119 .191, .184, .150 .003 .005, .012, .017 .041 .060, .044, .032 .009 .013, .023, .034

LtCaG .186 .245, .247, .172 .004 .005, .006, .008 .126 .166, .157, .122 .013 .021, .041, .051
HakeGCN .233 .331, .278, .204 .275 .424, .545, .603 .271 .377, .366, .251 .412 .508, .600, .652

(c) Music domain.

SEMusic × ReVerb SEMusic × OPIEC
C-MAP C-P@1, 3, 10 R-MRR R-H@10, 30, 50 C-MAP C-P@1, 3, 10 R-MRR R-H@10, 30, 50

TransE .012 .053, .035, .028 .002 .002, .006, .009 .041 .123, .082, .064 .002 .003, .008, .013
HAKE .201 .275, .270, .210 .131 .258, .344, .382 .284 .379, .363, .294 .321 .497, .612, .669

DistMult .035 .118, .092, .066 .019 .039, .123, .188 .047 .086, .078, .081 .017 .044, .092, .124
HolE .038 .118, .092, .066 .002 .002, .004, .007 .028 .062, .066, .043 .003 .003, .008, .015

R-GCN .005 .011, .010, .013 8e-4 7e-4, .002, .003 .014 .021, .039, .034 .002 .001, .005, .008
CompGCN .063 .092, .111, .095 .009 .019, .034, .042 .082 .199, .161, .112 .005 .012, .023, .036

LtCaG 182 .286, .251, .172 .003 .004, .006, .009 .287 .426, .378, .251 .025 .040, .055, .063
HakeGCN .238 .301, .307, .221 .178 .286, .412, .481 .328 .426, .417, .310 .421 .572, .694, .746

of integrating taxonomy and KG to mutually complete each other. There is an obvious
pattern when entity and relation numbers grow from hundreds in SEMedical × OPIEC
to ten-thousands in MSCG × ReVerb, where all baseline performances drop significantly
due to the incapability of unseen entities and relations. HAKE is the second-best model
that beats HakeGCN on some metrics in medical and general domains datasets. For more
discussion please refer to Appx. C.4.

6.3 In-depth Analysis

We conduct in-depth analysis on knowledge triplets generated by two strongest baseline
models CompGCN, HAKE, and HakeGCN, using the following manual (Validity) and
automated (Freshness, Diversity) evaluating metrics:

• Validity (Val.): whether generated triplets are valid to humans2.

2. The validity scores are annotated by two graduate students, Zishan Gu and Jiaying Lu, and three
undergraduate students, Jacob Choi, Leisheng Yu, and Dheep Dalamal.
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Figure 3: In-depth analysis for different models.
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Figure 4: In-depth analysis for neighbors impact.

• Freshness (Fre.): the percentage of generated knowledge triplets that are novel3.

• Diversity (Div.): Pielou’s evenness index4 which is popular in environment science to
represent how equal the phrases in overall produced knowledge triplets is.

We collect results and compute the three metrics on the AutoTAXO concept prediction task
by the top-5 predicted concepts, given 100 entities from MSCG × ReVerb and SEMusic ×
ReVerb. Similarly, we collect results on OpenKG link computed from the top-5 predicted
subject or object entities, given 100 triplet queries. In Figure 3, the left three grouped bars
(C-Val./Fresh./Div.) represent evaluation results of concepts assigned to entities of interest,
and the right three stacked bars (R-Val./Fresh./Div.) represent results of generated open
knowledge triplets. We observe that HakeGCN produces the highest quality knowledge
triplets. In particular, HakeGCN outperforms the two baseline models in both taxonomy
and KG validity, with competitive freshness and diversity.

6.4 Ablation Studies

Table 2: Ablation study results on HakeGCN technical designs.

SEMedical × ReVerb SEMdical × OPIEC

C-MAP R-MRR C-MAP R-MRR

HakeGCN .233 .275 .271 .412
w/o. taxo graph sampling .154 .268 .151 .376
w/o. polar conv .155 .254 .196 .331
w/o. phase bounded scorer .152 .239 .216 .311

Do our technical designs contribute to performance boost? To better understand
our proposed techniques, we closely study the key components of HakeGCN. The three
components are: taxonomy-based neighbor sampling (§5.2), polar GCN (§5.2), and GCN-
oriented phase bounded decoder (§5.3). Table 2 presents the results on two medical Tax-
oKG’s with the major metrics for both the AutoTAXO concept prediction (C-MAP) and
the OpenKG relation prediction (R-MRR) tasks. For row “w/o. taxo graph sampling”, we
use the uniform neighbor sampling; for “w/o. polar conv”, we use the Cartesian coordinate-
based graph convolution; for “w/o. phase bounded scorer”, we use the existing unbounded

3. A triplet not present in original TaxoKG is considered as fresh. Align with the open-world assumption,
we treat each unique mention as a unique entity(concept, relation).

4. Pielou’s eveness index: https://en.wikipedia.org/wiki/Species_evenness.
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score function from HAKE. Table 2 supports the effectiveness of proposed techniques, since
all three components improve the performance of HakeGCN.

Table 3: TaxoKG completion performance when presented with the separated data
(SEMedical only or OPIEC only) v.s. the jointed data (SEMedical × OPIEC).

(a) Concept prediction results.

Model Data C-MAP C-P@10, 30, 50

HAKE AutoTaxo .186 .344, .355, .177
HAKE TaxoKG .262 .371, .309, .256

CompGCN AutoTaxo .075 .284, .117, .109
CompGCN TaxoKG .041 .060, .044, .032

HakeGCN AutoTaxo .105 .093, .093, .123
HakeGCN TaxoKG .271 .377, .366, .251

(b) Relation prediction results.

Model Data R-MRR R-H@10, 30, 50

HAKE OKG .350 .454, .517, .545
HAKE TaxoKG .352 .450, .509, .544

CompGCN OKG .006 .012, .030, .049
CompGCN TaxoKG .009 .013, .023, .034

HakeGCN OKG .375 .478, .555, .607
HakeGCN TaxoKG .412 .508, .600, .652

Can taxonomy and KG mutually enhance each other? To support the utility of Tax-
oKG integration, we further conduct ablation study on the taxonomy completion (concept
prediction task) and KG completion (relation prediction task) performance when models
are presented with only separated data instead of the jointed data of TaxoKG. The results
clearly show the significant benefit of jointly modeling existing TAXOs and KGs. Specif-
ically, our HakeGCN is the most effective one in leveraging such joined data of TaxoKGs
(consistently achieving the most gains running on TaxoKGs over KGs and TAXOs only).

How do taxonomic and non-taxonomic neighbors impact the experiments? We
further analyze the impact of neighbor information from AutoTAXOs and OpenKGs. In
Figure 4, we plot the in-depth evaluation results of HakeGCN when using neighbors on
AutoTAXOs alone (NTaxo), OpenKGs alone (NKG), and both AutoTAXOs and OpenKGs
(NTaxoKG). For the GCN encoder, NTaxo is implemented by removing all taxonomic relation
edges in the input graph, and NKG by removing all non-taxonomic relation edges. The
metrics and notations are the same as Figure 3. As can be seen from Figure 4, using only
one type of neighbors does not significantly impact the freshness and diversity. In contrast,
using both types of neighbors from taxonomy and KG can produce more valid knowledge
triplets (e.g. improving from 0.02/0.07 to 0.09 in MSCG × OPIEC and from 0.37/0.53
to 0.58 in SEMedical × ReVerb). Such results clearly demonstrate the substantial mutual
enhancement between the taxonomy and KG towards the completion of TaxoKG.

7. Conclusions

To address the rigidity of closed-world KBs, we propose to construct TaxoKG by integrat-
ing automatically constructed taxonomies and KGs in the open-world setting. A benchmark
TaxoKG-Bench with six datasets is created and released for the novel tasks of TaxoKG
completion and application. Experiments on TaxoKG-Bench show that our novel KB
completion model, HakeGCN, can effectively complete TaxoKG to further improve its
coverage, so as to better support various knowledge-enhanced applications with rapidly
evolving knowledge. In the future, it would be interesting to further integrate taxonomies
and KGs with more sophisticated tools for TaxoKG creation.
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Appendix

Appendix A. More Details of TaxoKG-Bench

A.1 Introduction of Data Sources

We focus on the open-world setting where joining TAXOs and KGs can easily bring most
benefits (because the open-world KBs themselves are less complete and canonicalized).
Thus, we choose MSCG (general domain taxonomy), SEMedical (medical domain tax-
onomy), and SEMusic (musical domain taxonomy) because they are publicly available
open-world taxonomies and relatively large. The reasons for choosing ReVerb and OPIEC
are similar. Due to the open-world consideration, we do no use popular KBs such as
YAGO [Suchanek et al., 2007], FreeBase [Bollacker et al., 2008] and ConceptNet [Speer
et al., 2017]. Among them, MSCG is a large-scale AutoTAXO that contains millions of
entity-concept pairs from billions of web pages, while SEMedical and SEMusic are two
domain-specific AutoTAXOs containing thousands of entity-concept pairs constructed from
medical and music domain corpora. On the other side, both ReVerb and OPIEC are
OpenKGs that consist of a massive amount of subject-relation-object triplets extracted
from English web pages and Wikipedia. Since AutoTAXOs and OpenKGS exhaustively
extract ontology-relations and instance-relations from text, the knowledge triplets stored
in TaxoKG are numerous and not constrained by the finite schema. Moreover, all entity,
concept, and relation mentions are not canonicalized, thus introducing more challenges to
the TaxoKG completion task.

A.2 Statistics of TaxoKG-Bench

Figures 2a-2f show the concept, entity and relation frequency histograms on six aligned
TaxoKGs, where x-axis tick “#m-n” denotes the frequency bins ranges from m to n, and
y-axis denotes the proportion of cases that falls into each bin. “* × ReVerb” in Figure
2 captions indicates that histograms are produced on the three AutoTAXOs aligned with
the particular OpenKG constructed from ReVerb. Similarly, “* × ReVerb” indicates that
histograms are produced on the three AutoTAXOS aligned with OPIEC. MSCG × ReVerb
and MSCG × OPIEC are two large-scale TaxoKGs containing billions knowledge triplets
of before filtering. Therefore, we set high thresholds for them. In particular, concepts with
at least 20 grounded entities are kept in both MSCG × ReVerb and MSCG × OPIEC
datasets, while entities with frequency greater than or equal to 40, 25 are kept in MSCG ×
ReVerb and MSCG × OPIEC, respectively. For relation, frequencies greater than or equal
to 35, 3 are kept. Nevertheless, the remaining knowledge triplets are still in million scales,
which makes the evaluation on these two Taxo-KGs very slow. We then conduct further
down-samplings to build lightweight yet diverse testbeds. Similarly, we set the concept
threshold, entity threshold, relation threshold for SEMedical aligned and SEMusic aligned
Taxo-KGs as {3, 2, 2} and {3, 4, 3}, respectively.

After the downsampling process mentioned above, we then split the six TaxoKGs into
training, validation and testing sets for setting up a reproducible benchmark. On Auto-
TAXOs side, we split the entity-concept pairs by randomly assigning 55%, 5%, 35% entities
into training, validation, testing set. On OpenKG side, we split subject-relation-object
triplets by randomly assigning 80%, 5%, 15% triplets into training, validation, testing set.
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Table 4: Statistics of the six datasets in TaxoKG-Bench.

Dataset # entity # concept # pair # mention # predicate # triplet

MSCG × ReVerb 5.6/1.0/3.6(K) 1.8/0.5/1.4(K) 6.4/1.2/4.0(K) 12.8/3.8/7.0(K) 10.3/2.2/4.8(K) 59.7/3.7/11.2(K)
SEMedical × ReVerb 256/48/163 261/131/219 256/48/163 7.3/1.3/2.9(K) 6.1/0.9/2.3(K) 21.3/1.3/4.0(K)
SEMusic × ReVerb 412/76/262 335/229/283 412/76/262 7.5/2.1/4.1(K) 8.9/1.7/3.7(K) 41.2/2.6/7.7(K)
MSCG × OPIEC 6.3/1.1/4.0(K) 1.8/0.6/1.4(K) 7.6/1.4/4.8(K) 5.5/1.8/3.2(K) 3.2/0.4/0.9(K) 51.2/3.2/9.6(K)

SEMedical × OPIEC 238/44/151 256/136/209 238/44/151 1432/255/564 508/75/199 2239/176/499
SEMusic × OPIEC 443/81/282 363/256/305 443/82/282 3.6/1.2/2.3(K) 1.4/0.3/0.6(K) 15.9/1.5/3.9(K)

In other words, each split set is the union of assigned ontology-relation set and instance-
relation set.

A.3 Unseen Concepts, Entities, and Relations in TaxoKG-Bench

Table 5: Percentages of unseen entities, concepts and relations in the testing set of the six
datasets.

Dataset Unseen Entity Unseen Concept Unseen Relation

MSCG × ReVerb 24.7% 39.6% 8.8%
SEMedical × ReVerb 14.4% 11.4% 15.5%
SEMusic × ReVerb 3.6% 3.2% 11.4%
MSCG × OPIEC 47.3% 30.0% 39.8%

SEMedical × OPIEC 18.1% 9.6% 15.1%
SEMusic × OPIEC 4.0% 0.7% 6.0%

Our TaxoKG-Bench is different from existing KBs due to the open-world setting and
the integration of taxonomy and KG. As a result, significant portions of entities, concepts,
and relations in the test set are not observed in the training set, as opposed to the assump-
tion of closed-world KB that all entities and relations are fixed —only missing edges between
existing entities are to be discovered. Table 5 shows the percentages of unseen entities, con-
cepts and relation in the six TaxoKGs. In the most challenging one MSCG × OPIEC,
nearly half of the entities, relations, and one-third of concepts are hidden during training,
which poses a serious challenge for models targeted at the Taxo-KG completion task. In
Table 4, the columns #entity, #concept and #pair denote number of unique entities, con-
cepts and entity-concept pairs reside in AutoTAXO part, while #mention, #relation and
#triplet denote number of subject/object mentions, relation and subject-relation-object
triplets reside in OpenKG part.

Appendix B. Technical Details of HakeGCN

B.1 HakeGCN Model Architecture

The overall architecture of HakeGCN is illustrated in Figure 5.
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Figure 5: HakeGCN model architecture.

B.2 Obtaining Entity, Concept and Relation Representations in Open-World
Setting

In HakeGCN, we opt to create entity, concept, and relation representation from the tokens
of the surface mentions [Broscheit et al., 2020], to accommodate with new-emerging unseen
phrases in the open-world setting. The entity and concept representations are then fed
into the GCN encoder as initial embeddings of vertices h0

v, and relation representations as
initial embeddings of edges h0

r. Therefore, for any vertex or edge h that is in the form of a
sequence of tokens {t1, t2, . . . , tL}, the representation is calculated by

h = f(h) = fphr(ftok(t1), ftok(t2), . . . , ftok(tL)), (7)

where the lowercase letter h denotes vertex or edge phrase, the boldface lowercase letter h
denotes the phrase embedding of vertex or edge, ftok : VTok → Rd denotes the token em-

bedding look-up mapping function, and fphr : RL×d → Rd
′
denotes the phrase composition

function. The choice of composition functions is flexible, which includes average, sum, max,
RNN and even Transformer. In HakeGCN, we choose average for the sake of simplicity.
The token embedding look-up table is shared among vertices and edges.

After taking the average of token embeddings, we apply different single-layer perceptrons
on hv,hr to obtain the vertex and edge embeddings:

h0
v = PReLU(Wvhv + bv) and h0

r = PReLU(Wrhr + br). (8)

Here, we use v to represent any entity e ∈ V and concept c ∈ V that can be viewed as the
vertex of knowledge base B = (V,R, E). Similarly, we use r to represent the IsA relation
RIsA ∈ R of AutoTaxo and any relation r ∈ R of OpenKG that can be viewed as the edge
of B. For the non-linear activation, we opt to PReLU [He et al., 2015]. The superscript 0
denotes that we use them as the input of the GCN encoder.

B.3 Summary of Existing Relational-GCN Models

The message passing functions of existing relational-GCN models can be viewed in Table
6. hu,hr,hv denotes embeddings of source node u, relation r and target node v (message
receiver). W , Wr, Wdir(r) denotes learnable weight matrices for all relations, each relation
and each relation directions. Ws is a learnable weight matrix for self-loop edges. αr is a
learnable weight scalar for each relation. For KBGAT, [· ∥ ·] denote vector concatenation
operation. For CompGCN, ϕ is defined as composition operators.
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Table 6: Summary of message passing functions in existing relational-GCN models.

Model Message Passing Function

R-GCN [Schlichtkrull et al., 2018] Wrhu +Wshv

KBGAT [Nathani et al., 2019] W [hv ∥ hu ∥ hr]
SCAN [Shang et al., 2019] Wαrhu +Wshv

VR-GCN [Ye et al., 2019] W ((hv − hr) + (hu + hr))
CompGCN [Vashishth et al., 2020] Wdir(r)ϕ(hu,hr)

B.4 atan2 Function

The atan2 function used in Eq. (5) is defined as follows:

atan2(y, x) =



arctan( yx) if x > 0,
arctan( yx) + π if x < 0 and y ≥ 0,
arctan( yx)− π if x < 0 and y < 0,

π
2 if x = 0 and y > 0,

−π
2 if x = 0 and y < 0,
0 if x = 0 and y = 0.

(9)

B.5 Taxonomy-based Neighborhood Sampling

Although the neighborhood information is helpful for KB completion tasks, many existing
GCN-based models keep all neighbors during training which introduces noisy and even
hazardous information [Ye et al., 2019, Vashishth et al., 2020]. For instance, presented
“platypus is a mammal but lays eggs”, GCN-based models may induct that laying eggs
is a positive factor to judge an animal belongs to the mammal category. To relieve the
noisy, RGCN [Schlichtkrull et al., 2018] proposes to apply uniform random edge dropout
on its encoder, which may discard useful neighborhood information. Therefore, we propose
a taxonomy-based neighbor sampling strategy that intentionally keeps useful neighbors
and discards noisy ones. Taxonomy-based sampling assigns a higher probability for edges
between the entity of interest and the neighbors connected by both entity-entity and entity-
concept edges. The intuition is to allow the GCN to see more neighbors on the taxonomy,
which contains less noise. The value of higher chance is chosen through hyper-parameter
tuning (Appx. C.3).

B.6 HakeGCN Decoder Score Function

Similar to HAKE [Zhang et al., 2020], the modulus and phase distance functions in Eq. (6)
f(s, r, o) = −λmdm(s, r, o) − λpdp(s, r, o), where (s, r, o) denotes both entity-concept pairs
(with the associated relation of “IsA”) and entity-relation-entity triplets in TaxoKG, and
d(s, r, o) denotes the distance function. In particular, λm, λp ∈ R are two learnable param-
eters to balance the modulus distance dm(s, r, o) and the phase distance dp(s, r, o). The
modulus and phase distance functions are defined by the following equations:
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dm(s, r, o) =
∥∥hs,m ◦ hr,m − ho,m

∥∥
2
, (10)

dp(s, r, o) =
∥∥sin(hs,p + hr,p − ho,p)

∥∥
1
, (11)

where hs,ho denote the subject, object embeddings obtained from the GCN encoder pro-
duction hu in Eq. (2), and hr denotes the relation embedding obtained from a separate
transformation in decoder using a similar process as in Eq. (4). For the polar coordi-
nate, h∗,m,h∗,p denote the embeddings in the modulus and phase part. In Eq. (10), the
operator ◦ : Rd × Rd → Rd denotes the Hadamard product between two vectors. Let
∆θ = hs,p + hr,p − ho,p. In the original phase distance function of HAKE, there is a de-

nominator 2 for ∆θ, which leads Eq. (11) to
∥∥∥sin(∆θ

2 )
∥∥∥. This is due to h∗,p ∈ [0, 2π)d,

and thus (hs,p + hr,p − ho,p) ∈ [0, 4π)d. In our own version of the phase part distance
function, we remove the denominator. Therefore, the h∗,p produced by atan2 is bounded
in [−π

2 ,+
π
2 ]. This modification is essential because the phase boundary amplifies triplets’

phase distances, thus making it easier for decoder to distinguish entities at the same level
of the taxonomy. A similar idea can be seen in Sec. 3.2.1 of a recent paper [Kamigaito and
Hayashi, 2022].

B.7 Negative Sampling Loss

We adopt the widely used negative sampling loss function [Bordes et al., 2013, Yang et al.,
2015, Nickel et al., 2016, Zhang et al., 2020] with self-adversarial training [Sun et al., 2018]:

L = − log σ(γ − d(s, r, o))−
n∑

i=1

p(s′i, r, o
′
i) log σ(d(s

′
i, r, o

′
i)− γ), (12)

where σ is the sigmoid function, γ is a fixed margin that can be chosen by hyper-parameter
tuning, and (s′i, r, o

′
i) represents the ith sampled negative triplet of (s, r, o). The term

p(s′i, r, o
′
i) is the sampling probability of the particular negative triplet, which can be calcu-

lated by:

p(s′i, r, o
′
i) =

exp(αfsamp(s
′
i, r, o

′
i))∑

j exp(αfsamp(s′j , r, o
′
j))

, (13)

where α is another hyper-parameter that represents the temperature of negative sampling.

Appendix C. Detailed Experimental Settings and More Results

C.1 Introduction of “Filtered” Ranking Evaluation Protocol

We adopt the “filtered” evaluation protocol [Bordes et al., 2013], which is widely used in the
general KG relation prediction problem, for our OpenKG relation prediction subtask. In
OpenKG relation prediction, when predicting a triplet of interest, either subject or object
is replaced with the candidate entity to create a set of candidate triplets. The candidate
entities are then ranked in descending order, and ranking-based metrics are calculated over
the ranked order. Unfortunately, these metrics, though might be indicative, can be flawed
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when some considered wrong triplets end up being valid ones. For instance, it is possible
that there exist “<dog, capableOf, guard property>”, “<dog, capableOf, be a pet>” and
“<dog, capableOf, smell drugs>”, in the training set; then when evaluating the triplet
“<dog, capableOf, bark>” given query “<dog, capableOf, ?>”, models may rank those
triplets from training set above the test triplet. But this should not be counted as an error
because both triplets are true. To avoid such misleading behavior, TransE authors [Bordes
et al., 2013] propose to remove all the triplets that appear in the training, validation, or
test set (except the test triplet of interest) from the candidate pool.

C.2 Introduction of Baseline Models

We adopt the following representative models as baselines:

• Translation-based models embed entities and relations into dense vector space,
and define a score function such that valid triplets would be assigned higher scores
than invalid ones.

– TransE [Bordes et al., 2013] defines its score function for the triplet as∥h+ r − t∥,
where h, r, t denote the embeddings of head entity, relation and tail entity.

– HAKE [Zhang et al., 2020] utilizes the polar coordinate to automatically learn
the semantic hierarchy of entities without using clustering algorithms. Its score
function is ∥hm ◦ rm − tm∥2 + λ

∥∥sin((hp + rp − tp)/2)
∥∥
1
, where the subscript

m,p denote the modulus part and phase part of HAKE polar embedding.

• Semantic matching-based models measure plausibility of triplets by matching
latent semantics of embeddings of entities and relations.

– DistMult [Yang et al., 2015] defines its score function as h⊤Mrt, where Mr

denotes a matrix for one relation which models pairwise interaction between
head entity h and tail entity t. DistMult restricts Mr to diagonal matrices to
simplify the number of learnable parameters at the expense of inability to handle
asymmetric relations.

– HolE [Nickel et al., 2016] defines its score function as r⊤(h ⋆ t), where ⋆ denotes
circular correlation operation that makes a compression of pairwise interactions
between h and t. Since the circular correlation operator ⋆ is not commutative,
HolE can better handle asymmetric relations.

• GCN-based models incorporate powerful graph neural networks as encoders to
propagate the relational information among interlinked entities, and utilize transla-
tional scoring function as decoder to infer the validity of edges.

– R-GCN [Schlichtkrull et al., 2018] introduces relation-specific transformations
in the neighbor information propagation. Hence, its message passing function
is Wrhu + Wshv, where v denotes target node, u denotes source node, Ws

denotes the relation-specific transformation, and Ws denotes a self-connection
transformation. R-GCN proposes basis and block-diagonal decomposition of
relation specific filters for embeddings, which addresses the over-parameterization
of vanilla relational GCNs.
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– CompGCN [Vashishth et al., 2020] utilizes relation embedding hr instead of the
parameter matrix Wr to further avoid the over-parameterization issue. Its mes-
sage passing function is defined asWdir(r)ϕ(hu,hr), whereWdir(r) is a relation-
direction specific parameter to distinguish whether it is a inbound, outbound or
self-connection edge.

• Mutual enhancement-based models are designed to leverage the mutual enhance-
ment between taxonomies and KGs.

– LtCaG Learn-to-Conceptualize-and-Generalize (LtCaG) model is our own non-
parametric model following the mutual enhancement intuition. LtCaG does not
require any training process, which is similar to case-based reasoning model [Das
et al., 2020]. Instead, the inference process is driven by the query triplet’s prior
and likelihood. The following equations explicitly depicted how LtCaG works.
For instance, the probability of whether “<dog, capableOf, bark >” holds is
determined by the probabilities of whether golden retrievers (subtypes of dog)
or mammals (supertypes of dog) can bark. On the other hand, the probabil-
ity of “<papillon, isA, dog>” is determined by the overlap between papillon’s
attributes and dog’s attributes (non-taxonomic neighbors).

P(< dog,capableOf, bark >) =

0.5 ∗
∑

v P(< v, isA, dog >)P(< v, capableOf, bark >)∑
v P(< v, isA, dog >)

+ 0.5 ∗
∑

v P(< dog, isA, v >)P(< v, capableOf, bark >)∑
v P(< dog, isA, v >)

(14)

P(<papillon, isA, dog >) =

0.5 ∗
∑

e,v P(< papillon, e, v >)P(< dog, e, v >)∑
e,v 1− (1− P(< papillon, e, v >))(1− P(< dog, e, v >))

+ 0.5 ∗
∑

e,v P(< v, e, papillon >)P(< v, e, dog >)∑
e,v 1− (1− P(< v, e, papillon >))(1− P(< v, e, dog >))

(15)

C.3 Hyperparameters for Baselines and HakeGCN

We implement HakeGCN using PyTorch5 and DGL6. For compared methods, implemen-
tations are either from original authors (HAKE7, CompGCN8) or dedicated replication
(TransE, DistMult, HolE, R-GCN). We optimize HakeGCN and baselines through the
Adam or RAdam [Liu et al., 2020] optimizer with learning rate lr ∈ {1e-3, 3e-4, 1e-4}
chosen by hyperparameter tuning on validation sets. For regularization, we choose an
l2 penalty on all learnable parameters except PReLU layers and bias in fully-connected
layers, with weights Cl2 ∈ {0, 5e-5}. Other hyperparameters include: token embed-
ding size ({200, 300, 500}), entity and relation embedding size ({200, 500, 600, 800, 1000}),

5. PyTorch: https://pytorch.org/
6. DGL: https://www.dgl.ai/
7. HAKE: https://github.com/MIRALab-USTC/KGE-HAKE
8. CompGCN: https://github.com/malllabiisc/CompGCN
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dropout ratio ({0.1, 0.3, 0.5}), negative sampling size ({1, 8, 32, 64, 128, 256}), batch size
({128, 256, 512, 1024}), epoch size ({200, 400, 800, 1200}).

For HakeGCN specific hyperparameters, we select the margin γ in Eq. (12) from
{5, 8, 9, 10, 12}, and the temperature α in Eq. (13) from {0.5, 1.0, 1.5}. We use 2 GCN
layers for the GCN encoder module to balance more high-order evidence with the over-
smoothing issue, and we set all GCN layers embedding sizes the same as the entity and
relation embedding sizes. For the taxonomy-based neighborhood sampling, the weight of
keeping neighbors on the taxonomy is chosen from {1, 1.5, 2.0, 3.0, 5.0}, while the weight of
keeping other neighbors is 1.

C.4 More Discussion on the Main TaxoKG Completion Experiments

Why does LtCaG achieve high performance? The baseline model LtCaG achieves
high performance in the concept prediction task in medical and musical domain datasets,
while performing not so well in the concept prediction task in general domain and all open
KG completion tasks. LtCaG itself is a non-parametric model that reflects the intuition that
“if a mammal can eat and produce milk, and if a pangolin can also eat and produce milk,
then it is likely that a pangolin is a mammal” (for implementation details please refer to
Appx. C.2). Both medical and musical domain datasets have small scales (less than 1,000)
of concepts to predict, so LtCaG is very effective in these two domains. However, when
presented with large amounts of concepts and entities to predict, LtCaG is significantly
worse than parametric models.

Does HakeGCN beat other SOTA models? HakeGCN indeed outperforms SOTA
models in almost every case. For instance, HakeGCN is consistently the best in the
musical domain TaxoKGs (Tab. 1c) across all evaluation metrics; it is also the champion
in medical domain TaxoKGs (Tab. 1b) across almost all (13/16) metrics except for C-
P@3,10; HakeGCN also performs the best in general domain TaxoKGs (Tab. 1a) across
10/16 metrics. It achieves the second place in all cases if not the first, and it always leaves
the remaining competitors far behind.

C.5 Case Studies of Neighbors for Predicting Concepts and Relations

To have a more intuitive sense about the mutual enhancement of taxonomy and KG for
TaxoKG completion, we show some examples of the neighbors used by HakeGCN in
the AutoTAXO concept prediction task (Table 7) and the OpenKG relation prediction task
(Table 8), where the check mark “✓”, the question mark “?”, or the cross mark “✗” indicate
neighbors are beneficial, neutral or harmful for the prediction task, and “-” denotes concept
itself serving as subject or object in the corresponding KG triplet. As we expect, neighbors
from the taxonomy are mostly helpful for predicting the KG relations, and vice versa.
For instance, when predicting the concept disease in Table 7, neighbors (-, have reach,
epidemic proportion), (two, die of, -), and (alcohol, can cause, -) are supporting the correct
prediction, although the neighbor (-, can be treat in, a number of way) may introduce some
confusing evidence. On the other side, concepts illness, disease, disorder are helpful for
predicting the relation die from. Therefore, the case studies clearly support our key insight
about the mutual enhancement, and they shed a light on the future direction to distinguish
helpful and harmful neighbors towards further enhanced TaxoKG completion.
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Table 7: KG neighbors used in taxonomy concept prediction.

Concept KG Neighbors

technique

(make from, recycled material, -) ✓

(architecture, be a thing of, -) ✓

(-, be apply, biology) ✓

(-, mean of, expression) ✗

disease

(-, have reach, epidemic proportion) ✓

(-, can be treat in, a number of way) ✓

(two, die of, -) ✓

(alcohol, can cause, -) ✓

rock music

(-, be about, attitude) ✓

(-, will start, a new era) ?
(-, be a style of, music) ?

(videos, recently tag with, -) ✗

Table 8: Taxonomy neighbors used in KG relation prediction.

Relation Taxonomy Neighbors

be marry to control ✗, family name ✓, guest ?
die from illness ✓, disease ✓, disorder ✓

listen to work of art ?, musical work ✓, piece of music ✓

C.6 Efficiency Evaluation
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Figure 6: Model efficiency comparison in log scale.

We implement HakeGCN and all compared methods in Python and execute them on a
server with two 48 cores Intel Xeon CPUs (768GB RAM), using one NVIDIA GeForce GTX
1080 Ti GPU (each with 24GB RAM). Figure 6 shows the runtimes of different models under
various training sample sizes. HakeGCN shares similar time-complexity with HAKE and
CompGCN. Although TransE and RGCN are more efficient, their performances are far from
satisfactory. The slight extra time cost of HakeGCN is introduced by neighbor information
aggregation and population, polar coordinate projection, and graph sampling.
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